contestada

The sum of the base and the height of a triangle is 2626 cm. find the dimensions for which the area is a maximum.

Respuesta :

Let the height of the triangle be [tex] h [/tex] and the base be [tex] b [/tex].

Given that [tex] h+b=26 [/tex] and the area of the triangle is [tex] A=\frac{bh}{2} [/tex]. Or

[tex] A(h)=\frac{(26-h)h}{2} [/tex].

When the area is maximum, [tex] \frac{dA}{dh} =0 [/tex].

or,

[tex] \frac{d\frac{(26-h)h}{2} }{dh} =0 [/tex].

[tex] \frac{d(26-h)h }{dh} =0 [/tex]

[tex] 2h-26=0 [/tex]

[tex] h=13 [/tex]

The dimensions of the triangle with maximum area is

[tex] h=13 cm, b=13 cm [/tex]