Respuesta :
Answer:
a) [tex]Q=467443.8\ J[/tex]
b) [tex]Q_m=299700\ J[/tex]
c) [tex]Q_2=131859\ J[/tex]
Explanation:
Given:
- specific heat of ice, [tex]c_i=2100\ J.kg^{-1}.^{\circ}C^{-1}[/tex]
- latent heat of fusion of ice, [tex]L=333000\ J.kg^{-1}[/tex]
- specific heat of water, [tex]c_w=4186\ J.kg^{-1}.^{\circ}C^{-1}[/tex]
(a)
- mass of snow, [tex]m_s=0.9\ kg[/tex]
- initial temperature of snow, [tex]T_{is}=-15^{\circ}C[/tex]
- Final temperature of the consumed mass, [tex]T_f=37^{\circ}C[/tex]
Now the energy absorbed from the body after eating this snow:
[tex]Q=m_s.c_i.\Delta T_i+m_s.L+m_s.c_w.\Delta T_w[/tex]
[tex]Q=0.9\times 2100\times (0-(-15))+0.9\times 333000+0.9\times 4186\times (37-0)[/tex]
[tex]Q=467443.8\ J[/tex]
(b)
Energy absorbed from the body in melting the ice is the total latent heat:
[tex]Q_m=m_s.L[/tex]
[tex]Q_m=0.9\times 333000[/tex]
[tex]Q_m=299700\ J[/tex]
(c)
- initial temperature of water, [tex]T_{iw}=2^{\circ}C[/tex]
- final temperature of water, [tex]T_{iw}=37^{\circ}C[/tex]
Now, the amount of energy invested by body for the water at this condition:
[tex]Q_2=m_s.c_w.\Delta T_2[/tex]
[tex]Q_2=0.9\times 4186\times (37-2)[/tex]
[tex]Q_2=131859\ J[/tex]