Respuesta :
-------------------------------------------------------------------------------------------------------------
Answer: [tex]\textsf{(8, 0) and (-9, 0)}[/tex]
-------------------------------------------------------------------------------------------------------------
Given: [tex]\textsf{f(x) = (x - 8)(x + 9)}[/tex]
Find: [tex]\textsf{Determine the x-intecept}[/tex]
Solution: In order to find the x-intercept we need to set the y-value to 0 which means that we are looking for the points that cross the x-axis. Then we just solve for x and we get the x-intercepts.
Set y to 0
- [tex]\textsf{f(x) = (x - 8)(x + 9)}[/tex]
- [tex]\textsf{0 = (x - 8)(x + 9)}[/tex]
Determine the first x-intercept
- [tex]\textsf{x - 8 + 8 = 0 + 8}[/tex]
- [tex]\textsf{x = 0 + 8}[/tex]
- [tex]\textsf{x = 8}[/tex]
Determine the second x-intercept
- [tex]\textsf{x + 9 - 9 = 0 - 9}[/tex]
- [tex]\textsf{x = 0 - 9}[/tex]
- [tex]\textsf{x = - 9}[/tex]
There are two x-intercepts of the quadratic function that was provided which are (8, 0) and (-9, 0).